Home
Class 9
MATHS
(v)(1)/((5+3sqrt(2)))...

(v)(1)/((5+3sqrt(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Rationalise the denominator of each of the following. (i) (1)/(sqrt(7)) (ii) (sqrt(5))/(2sqrt(3)) (iii) (1)/(2+ sqrt(3)) (1)/(sqrt(3)) (v) (1)/((5+3sqrt(2)) (vi) (1)/(sqrt(7) - sqrt(6)) (vi) (1)/(sqrt(7) - sqrt(6)) (viii) (1+ sqrt(2))/(2-sqrt(2)) (ix) (3-2sqrt(2))/(3+2sqrt(2))

Rationalise the denominator of each the of the following : (i)(1)/(3+sqrt(5))" "(ii)(1)/(sqrt(5)-sqrt(3))" "(iii)(16)/(sqrt(41)+5)" "(iv)(30)/(5sqrt(3)+3sqrt(5))" "(v)(3-2sqrt(2))/(3+2sqrt(2))

Rationalise the denominator of each the of the following : (i)(1)/(3+sqrt(5))" "(ii)(1)/(sqrt(5)-sqrt(3))" "(iii)(16)/(sqrt(41)+5)" "(iv)(30)/(5sqrt(3)+3sqrt(5))" "(v)(3-2sqrt(2))/(3+2sqrt(2))

(1)/(sqrt(3)+sqrt(2))-(2)/(sqrt(5)-sqrt(3))-(3)/(sqrt(2)-sqrt(5))

Simplify each of the following by rationalising the denominator,(1)/(5+sqrt(2)) (ii) (5+sqrt(6))/(5-sqrt(6)) (iii) (7+3sqrt(5))/(7-3sqrt(5)) (iv) (2sqrt(3)-sqrt(5))/(2sqrt(2)+3sqrt(3))

Prove that (i) (1)/(3+sqrt(7)) + (1)/(sqrt(7)+sqrt(5))+(1)/(sqrt(5)+sqrt(3)) +(1)/(sqrt(3)+1)=1 (ii) (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7)) +(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8) + sqrt(9)) = 2

Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5 .

[(1)/(sqrt(2)+sqrt(3)-sqrt(5))+(1)/(sqrt(2)-sqrt(3)-sqrt(5))] in simplified form equals (a) 0 (b) (1)/(sqrt(2)) (c) 1 (c) sqrt(2)

Rationalise the denominator of each of the following (sqrt(3)+1)/(sqrt(2))( ii) (sqrt(2)+sqrt(5))/(sqrt(3))( iii) (3sqrt(2))/(sqrt(5))

Rationales the denominator and simplify: (sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) (ii) (5+2sqrt(3))/(7+4sqrt(3)) (iii) (1+sqrt(2))/(3-2sqrt(2)) (2sqrt(6)-sqrt(5))/(3sqrt(5)-2sqrt(6)) (v) (4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18)) (vi) (2sqrt(3)-sqrt(5))/(2sqrt(3)+3sqrt(3))