Home
Class 12
MATHS
If A=[(2,1,3),(4,-1,0),(-7,2,1)], find A...

If `A=[(2,1,3),(4,-1,0),(-7,2,1)]`, find `A^(-1)` and hence solve the following system of equations: `2x+y+3z=3` `4x-y=3` `-7x+2y+z=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[3,2,1],[4,-1,2],[7,3,-3]] then find A^(-1) and hence solve the following system of equations : 3x+ 4y+7z= 14, 2x-y+ 3z= 4 and x+ 2y-32= 0.

If A = [(1,2,3),(1,3,-1),(-1,1,-7)] , find A^(-1) , hence solve the following system of linear equations: x + y - z = 3 , 2x + 3y +z 10 and 3x - y - 7z = 1

If A=[{:(1,1,1),(1,0,2),(3,1,1):}] , find A^(-1) . Hence, solve the system of equations : x+y+z=6 , x+2z=7 , 3x+y+z=12

If A=[[2,3,4],[1,-1,0],[0,1,2]] , find A^(-1) . Hence, solve the system of equations x-y=3, 2x+3y+4z=17, y+2z=7

If A=[[2,3,4],[1,-1,0],[0,1,2]] , find A^(-1) . Hence, solve the system of equations x-y=3, 2x+3y+4z=17, y+2z=7

Solve the following system of equations: x-y+z=4,\ \ \ \ x-2y-2z=9,\ \ \ \ 2x+y+3z=1

If A = [(2,-1,3),(1,3,2),(3,-4,-1)] , find A^-1 , Using A^-1 , solve the following system of linear equations 2x - y + 3z = 13, x + 3y + 2z = 1, 3x - 4y - z = 8 .

A=[3-4 2 2 3 5 1 0 1] , find A^(-1) and hence solve the following system of equations: 3x-4y+2z=-1,\ \ 2x+3y+5z=7,\ \ x+z=2