Home
Class 11
MATHS
Statement l [lim(n->oo) an]=lim(n->oo) ...

Statement l `[lim_(n->oo) a_n]=lim_(n->oo) [a_n], [.]` denotes the greatestinteger function. Statement II `lim_(n->oo) a_n =3`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) nsin(1/n)

The value of lim_(n->oo) n^(1/n)

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

lim_(x rarr oo) (logx^(n)-[x])/([x]) , where n in N and [.] denotes the greatest integer function, is

Let alpha_(n) =(2+sqrt(3))^(n) . Find lim_(n to oo) (alpha_(n)-[alpha_(n)]) ([.] denotes greateset integer function)

Let alpha_(n) =(2+sqrt(3))^(n) . Find lim_(n to oo) (alpha_(n)-[alpha_(n)]) ([.] denotes greateset integer function)

If f(x)=lim_(m->oo) lim_(n->oo)cos^(2m) n!pix then the range of f(x) is

lim_(n to oo) 1/n =0 , lim_( n to oo) 1/n^2

Prove that lim_(n->oo)(1+1/n)^n=e