Home
Class 11
MATHS
Prove that ((2n)!)/(2^(2n) (n!)^2)<= 1/s...

Prove that `((2n)!)/(2^(2n) (n!)^2)<= 1/sqrt(3n+1)` for all `n in N`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ((2n)!)/(n!) =2^(n) (1,3,5,……..(2n-1)) .

Prove that ((2n)!) / (n!) = 2^n(2n - 1) (2n - 3) ... 5.3.1.

Prove that ((2n+1)!)/(n!)=2^(n)[1.3.5.....(2n-1)*(2n+1)]

Prove that ((2n+1)!)/(n!)=2^(n){1.3.5(2n-1)(2n+1)}

Prove that ((2n+1)!)/(n !)=2^n{1. 3. 5 .........(2n-1)(2n+1)}

Prove that (^(2n)C_0)^2+(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Prove that (^(2n)C_0)^2-(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Prove that (n!)^2 le n^n. (n!)<(2n)! for all positive integers n.