Home
Class 10
MATHS
(101)/(123)x+(1)/(x)+1=0" is "...

(101)/(123)x+(1)/(x)+1=0" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the reciprocals of the roots of the equation (101)/(123)x+(1)/(x)+1=0

The number of terms in (1+x)^(101)(1+x^(2)-x)^(100) is:

The coeggicient of x^(50) in the series sum_(r=1)^(101)rx^(r-1)(1+x)^(101-r) is

The coefficient of x^(50) in the series sum_(r=1)^(101)rx^(r-1)(1+x)^(101-r) is

The coefficient of x^(50) in the series sum_(r=1)^(101)rx^(r-1)(1+x)^(101-r) is

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2) ,then the value of x^(100)+y^(100)+z^(100)+(12)/(x^(101)+y^(101)+z^(101)) is equal to

If sin ^(-1) x + sin ^(-1) y + sin ^(-1) z = (3pi)/(2) then the value of x ^(100) + y ^(100) + z ^(100) - (3)/( x ^(101) + y^(101) + z ^(101)) is

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) , the value of x^(2017)+y^(2018)+z^(2019)-(9)/(x^(101)+y^(101)+z^(101)) is