Home
Class 12
MATHS
int[x^4+x^2+1]/[x^2+x+1]dx...

`int[x^4+x^2+1]/[x^2+x+1]dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_1^4 (x^2-x)dx

If the integral int(x^(4)+x^(2)+1)/(x^(2)x-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

int (x^(4) + x^(2) +1)/(x^(2) + 1) dx =

Find int( x^4 )/((x-1)(x^2+1))dx

(i) int((x^(2) - 1)/(x^(2) + 1))dx , (ii) int ((x^(6)- 1)/(x^(2) + 1))dx (iii) int ((x^(4))/(1+x^(2)))dx , (iv) int((x^(2))/(1+x^(2)))dx

int (x^(2) +1)/(x^(4) + x^(2) + 1) dx =

int (x^4 -1)/(x^2 (x^4+x^2+1)^(1/2)) dx is equal to

Evaluate the following integrals. (i) int 1/((x - 2)^2 + 1)dx " " (ii) int (x^2)/(x^2 + 5)dx " " (iii) int 1/(sqrt(1 + 4x)^2)dx

int dx/(x^(4) + x^(2) + 1)