Home
Class 12
MATHS
If the points (0,0),(2,0),(0,4),(1,k) ar...

If the points `(0,0),(2,0),(0,4),(1,k)` are concyclic then `k^2-4k=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the points (0,0),(2,0),(0,-2) and (k,-2) are concylic then k=

If the points (0,0),(2,0),(0,-2) and (k,-2) are concylic then k=

If the points (0,0),(2,3),(3,2),(k,k),(k!=0) are concyclic then k=

If the points (0,0),(2,0),(0,-2) and (k,-2) are concyclic then k is

If the points (3,0),(0,4),(0,0) and (k,4) are concylic then k=

If the points (2,3),(0,2),(4,5),(0,k),(k!=2) are concyclic then k=

If the points (1,-6),(5,2),(7,0),(-1,k)(k!=1) are concyclic then k=

If the points (2,0),(0,1),(4,0) and (0,a) are concyclic then a=

For what value of k, the points (0,0),(1,3),(2,4),(k,3) are con-cyclic?

The points (1,0),(0,1),(0,0) and (2k,3k),k!=0 are concyclic if k =