Home
Class 12
MATHS
If vec a xx vec b=vecb xx vec c !=0, wh...

If `vec a xx vec b=vecb xx vec c !=0`, where `veca, vec b and vec c` are coplanar vectors, then for some scalar k

Promotional Banner

Similar Questions

Explore conceptually related problems

vec a xxvec b=vec b xxvec c!=0, where vec a,vec b, and vec c are coplanar vectors,then for some scalar k prove that vec a+vec c=kvec b

(vec a xxvec b)xx(vec b xxvec c)=vec b, where vec a,vec b, and vec c are nonzero vectors,then vec a,vec b, and vec c can be coplanar vec a,vec b, and vec c must be coplanar vec a,vec b, and vec c cannot be coplanar none of these

If (vec a xx vec b) xx vec c = vec a xx (vec b xx vec c) , where vec a, vec b and vec c are any three vectors such that vec a. vec b ne 0, vec b . vec c ne 0 , then vec a and vec c are

If (veca xx vecb)xx vec c=veca xx (vecb xx vec c) , where veca, vecb and vec c are any three vectors such that veca*vecb ne 0, vecb*vec c ne 0 , then veca and vec c are :

If (veca xx vecb)xx vec c=veca xx (vecb xx vec c) , where veca, vecb and vec c are any three vectors such that veca*vecb ne 0, vecb*vec c ne 0 , then veca and vec c are :

Solve the following equation for the vector vec p; vec p xx vec a+(vec p. vec b)vec c=vec b xx vec c where vec a ,vec b,vec c are non zero non coplanar vectors and vec a is neither perpendicular to vec b non to vec c hence show that (vec p xx vec a+([vec a vec b vec c])/(vec a*vec c) vec c) is perpendicular vec b-vec c.

36. If vec a, vec b,vec c and vec d are unit vectors such that (vec a xx vec b) . vec c xx vec d= 1 and vec a.vec c =1/2 then a) vec a, vec b and vec c are non-coplanar b) vec b, vec c ,vec d are non -coplanar c) vec b, vecd are non parallel d) vec a , vec d are parallel and vec b, vec c are parallel

If vec a, vec b,vec c and vec d are unit vectors such that (vec a xx vec b) . vec c xx vec d= 1 and vec a.vec c =1/2 then a) vec a, vec b and vec c are non-coplanar b) vec b, vec c ,vec d are non -coplanar c) vec b, vecd are non parallel d) vec a , vec d are parallel and vec b, vec c are parallel

If vec(a) xx vec(b) = vec(b) xx vec(c )= vec(c )xx vec(a) , where vec(a), vec(b), vec(c ) are non zero vectors, then

36. If vec a, vec b, vec c and vec d are unit vectors such that (vec a xx vec b) .vec c xx vec d = 1 and vec a.vec c = 1/2 then a) vec a, vec b and vec c are non-coplanar b) vec b, vec c, vec d are non -coplanar c) vec b, vecd are non parallel d) vec a, vec d are parallel and vec b, vec c are parallel