Home
Class 12
MATHS
If f(x)=x-1/x then prove that f(x)=-f(1/...

If `f(x)=x-1/x` then prove that `f(x)=-f(1/x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f is a real function defined by f(x)=(x-1)/(x+1), then prove that f(2x)=(3f(x)+1)/(f(x)+3)

If f(x)=(1-x)/(1+x) , then prove that f(x)+f(1/x)=0 .

If f (x) =(x-1)/(x+1), then prove that f{f(x)}=-1/x.

If f (x) =(x-1)/(x+1), then prove that f{f(x)}=-1/x.

If f(x) = (x-1)/(x+1) , then prove that (f(x)-f(y))/(1+f(x)f(y))=(x-y)/(1+xy) .

If f(x)=(x-1)/(x+1) , then prove that: (f(b)-f(a))/(1+f(b)*f(a))=(b-a)/(1+ab)

If f(x)=(x-1)/(x+1) , then prove that: (f(b)-f(a))/(1+f(b)*f(a))=(b-a)/(1+ab)

If f(x)=(x-1)/(x+1) then show that f(1/x)=-f(x) and f(-1/x)=(-1)/f(x)

If f is a real function defined by f(x)=(x-1)/(x+1) , then prove that f(2x)=(3f(x)+1)/(f(x)+3)

Let (x) is a real function, defines as f(x) =(x-1)/(x+1), then prove that f(2x)=(3f(x)+1)/(f(x)+3).