Home
Class 12
MATHS
Let f(x)=x^2+ 1/x^2 and g(x)=x-1/x, x ...

Let `f(x)=x^2+ 1/x^2` and `g(x)=x-1/x, x in R-{-1,0,1}`. If `h(x) = f(x)/g(x)` then the local minimum value of `h(x)` is: (1) 3 (2) `-3` (3) `-2sqrt(2)` (4) `2sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sqrt(2-x) and g(x)=sqrt(1-2x) ,then the domain of f[g(x)] is:

Let f(x)=1+sqrt(x) and g(x)=(2x)/(x^(2)+1)

Let f(x)={x-1,-1<=x<0 and x^(2),0<=x<=1,g(x)=sin x and h(x)=f(|g(x)|)+[f(g(x)) Then

If f(x)=x^2+(1)/(x^2), g(x)=x^4+(1)/(x^4) and a+(1)/(a)=3 , then the respectively values of f(a) and g(a) are

Let F:R to R be such that F for all x in R (2^(1+x)+2^(1-x)), F(x) and (3^(x)+3^(-x)) are in A.P., then the minimum value of F(x) is:

If f(x)=cos^(-1)(x^((3)/(2))-sqrt(1-x-x^(2)+x^(3))),AA 0 le x le 1 then the minimum value of f(x) is

Let f:R -{3} to R{1} : f(x) = (x-2)/(x-3)and g:R to R , g(x)=2x-3 and f^-1(x)+g^-1(x)=13/2 then sum of all value of x is

Let f(x)={x+1,x>0 and 2-x,x<=0g(x)={x+3,x<1 and x^(2)-2x-2,1<=x<2 and x-5

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is