Home
Class 12
MATHS
The integral int (sin^2xcos^2x)/(sin^5x+...

The integral `int (sin^2xcos^2x)/(sin^5x+cos^3xsin^2x+sin^3xcos^2x+cos^5x)^2 dx` is equal to

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int(sin^(2)xcos^(2)x)/(sin^(5)x+cos^(3)xsin^(2)x+sin^(3)xcos^(2)x+cos^(5)x)^(2)dx is equal to (where c is a constant of integration)

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx

Find int(sin^3x+cos^3x)/(sin^2xcos^2x)dx .

int (sin^2x-cos^2x)/(sin^2x cos^2 x) dx is equal to:

int(sin^(2)x - cos^(2)x)/(sin^(2)x cos^(2)x) dx is equal to

int(5cos^3x+7sin^3x)/(sin^2xcos^2x)dx

int(sin2xcos2x)/(sin^(4)2x+cos^(4)2x)dx=

int(sin^(2)x-cos^(2)x)/(sin^(2)xcos^(2)x)dx=