Home
Class 12
MATHS
If sum(i=1)^9 (xi-5)=9 and sum(i=1)^9 (...

If `sum_(i=1)^9 (x_i-5)=9 and sum_(i=1)^9 (x_i-5)^2=45` then the standard deviation of the 9 items `x_1,x_2,.....,x_9` is

A

3

B

9

C

4

D

2

Text Solution

AI Generated Solution

To find the standard deviation of the 9 items \( x_1, x_2, \ldots, x_9 \) given the conditions: 1. \( \sum_{i=1}^{9} (x_i - 5) = 9 \) 2. \( \sum_{i=1}^{9} (x_i - 5)^2 = 45 \) We can follow these steps: ### Step 1: Understand the given information ...
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If sum_(i=1)^9 (x_i-5)=9 and sum_(i=1)^9 (x_i-5)^2=45 , then the standard deviation of the 9 times x_1,x_2,….,x_9 is

If sum_(i=1)^(18)(x_(i)-8)=9 and sum_(i=1)^(18)(x_(i)-8)^(2)=45 then the standard deviation of x_(1),x_(2),...,x_(18) is

Knowledge Check

  • If sum_(i=1)^n (x_i -a) =n and sum_(i=1)^n (x_i - a)^2 =na then the standard deviation of variate x_i

    A
    `sqrt(a^2-1)`
    B
    `sqrt(a-1)`
    C
    `sqrt(n^2a-1)`
    D
    `sqrt(n^2a^2-n)`
  • In a group of data, there are n observations, x,x_(2), ..., x_(n)." If "sum_(i=1)^(n)(x_(i)+1)^(2)=9n and sum_(i=1)^(n)(x_(i)-1)^(2)=5n , the standard deviation of the data is

    A
    2
    B
    `sqrt(7)`
    C
    5
    D
    `sqrt(5)`
  • If sum _( i =1) ^(18) ( x _(1) - 8) =9 and sum _ ( i =1) ^( 18) (x _(1) - 8) ^(2) = 45, then the standard deviation of x _(1), x _(2),..., x _(18) is

    A
    `4/9`
    B
    `9/4`
    C
    `3/2`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    If sum_(i=1)^(5) (x_(i) - 6) = 5 and sum_(i=1)^(5)(x_(i)-6)^(2) = 25 , then the standard deviation of observations

    If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=

    If sum_(i=1)^(n)sin x_(i)=n then sum_(i=1)^(n)cot x_(i)=

    If x_(1), x_(2), "…......." x_(18) are observation such that sum_(j=1)^(18)(x_(j) -8) = 9 and sum_(j=1)^(18)(x_(j) -8)^(2) = 45 , then the standard deviation of these observations is

    If x_1,x_2,....,x_18 are observations such that sum_(j=1)^18 ( x_j-8)=9 and sum_(j=1)^18(x_j-8)^2=45 , then standard deviation of these observations is