Home
Class 12
MATHS
If z1 and z2 both satisfy the relation z...

If `z_1 and z_2` both satisfy the relation `z+overlinez=2|z-1| and arg(z_1-z_2)=pi/4,` then `Im(z_1+z_2)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Let two distinct complex numbers z_1 and z_2 both satisfy the equation z+ bar(z) = 2 |z-1| and "arg" (z_1 -z_2)=(pi)/(4) , then

If z_1a n dz_2 both satisfy z+barz r =2|z-1| and a r g(z_1-z_2)=pi/4 , then find I m(z_1+z_2) .

If z_1a n dz_2 both satisfy z+barz r =2|z-1| and a r g(z_1-z_2)=pi/4 , then find I m(z_1+z_2) .

If z_(1)andz_(2) both satisfy z+ddot z=2|z-1| and arg(z_(1)-z_(2))=(pi)/(4), then find Im(z_(1)+z_(2))

If z_1a n dz_2 both satisfy z+ z =2|z-1| and a r g(z_1-z_2)=pi/4 , then find I m(z_1+z_2) .

If z_(1) and z_(2) satisfy the equation |z-2|=|"Re"(z)| and arg (z1-z2)=pi/3, then Im (z1+z2) =k/sqrt 3 where k is

|z_(1)|=|z_(2)| and arg((z_(1))/(z_(2)))=pi, then z_(1)+z_(2) is equal to

If |z_1-1|=Re(z_1),|z_2-1|=Re(z_2) and arg (z_1-z_2)=pi/3, then Im (z_1+z_2) =

Complex number z_1 and z_2 satisfy z+barz=2|z-1| and arg (z_1-z_2) = pi/4 . Then the value of lm (z_1+z_2) is