Home
Class 12
MATHS
Ba n dC are fixed points having coordin...

`Ba n dC` are fixed points having coordinates (3, 0) and `(-3,0),` respectively. If the vertical angle `B A C` is `90^0` , then the locus of the centroid of ` A B C` has equation. (a)`x^2+y^2=1` (b) `x^2+y^2=2` (c)`9(x^2+y^2)=1` (d) `9(x^2+y^2)=4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If points A and B are (1, 0) and (0, 1), respectively, and point C is on the circle x^2+y^2=1 , then the locus of the orthocentre of triangle A B C is (a) x^2+y^2=4 (b) x^2+y^2-x-y=0 (c) x^2+y^2-2x-2y+1=0 (d) x^2+y^2+2x-2y+1=0

If points Aa n dB are (1, 0) and (0, 1), respectively, and point C is on the circle x^2+y^2=1 , then the locus of the orthocentre of triangle A B C is (a) x^2+y^2=4 (b) x^2+y^2-x-y=0 (c) x^2+y^2-2x-2y+1=0 (d) x^2+y^2+2x-2y+1=0

If points A and B are (1, 0) and (0, 1), respectively, and point C is on the circle x^2+y^2=1 , then the locus of the orthocentre of triangle A B C is x^2+y^2=4 x^2+y^2-x-y=0 x^2+y^2-2x-2y+1=0 x^2+y^2+2x-2y+1=0

If A(x_1,y_1),B(x_2,y_2) and C(x_3,y_3) are the vertices of triangleABC ,find the coordinates of the centroid of the triangle.

(6,0),(0,6),a n d(7,7) are the vertices of a A B C . The incircle of the triangle has equation. (a) x^2+y^2-9x-9y+36=0 (b) x^2+y^2+9x-9y+36=0 (c) x^2+y^2+9x+9y-36=0 (d) x^2+y^2+18 x-18 y+36=0

x=2, y=−1 is a solution of the linear equation (a) x+2y=0 (b) x+2y=4 (c) 2x+y=0 (d) 2x+y=5

Let vertices of the triangle ABC is A(0,0),B(0,1) and C(x,y) and perimeter is 4 then the locus of C is : (A)9x^(2)+8y^(2)+8y=16(B)8x^(2)+9y^(2)+9y=16(C)9x^(2)+9y^(2)+9y=16(D)8x^(2)+9y^(2)-9x=16

(6,0),(0,6),a n d(7,7) are the vertices of a A B C . The incircle of the triangle has equation. a x^2+y^2-9x-9y+36=0 b x^2+y^2+9x-9y+36=0 c x^2+y^2+9x+9y-36=0 d x^2+y^2+18 x-18 y+36=0

In triangle A B C , the equation of side B C is x-y=0. The circumcenter and orthocentre of triangle are (2, 3) and (5, 8), respectively. The equation of the circumcirle of the triangle is a) x^2+y^2-4x+6y-27=0 b) x^2+y^2-4x-6y-27=0 c) x^2+y^2+4x-6y-27=0 d) x^2+y^2+4x+6y-27=0

In triangle A B C , the equation of side B C is x-y=0. The circumcenter and orthocentre of triangle are (2, 3) and (5, 8), respectively. The equation of the circumcirle of the triangle is a) x^2+y^2-4x+6y-27=0 b) x^2+y^2-4x-6y-27=0 c) x^2+y^2+4x-6y-27=0 d) x^2+y^2+4x+6y-27=0