Home
Class 12
MATHS
f(x)= cosec^(-1)[1+sin^(2)x], where [*] ...

`f(x)= cosec^(-1)[1+sin^(2)x]`, where `[*]` denotes the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=cos ec^(-1)[1+sin^(2)x], where [*] denotes the greatest integer function,then the range of f

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

Find the range of cosec^(-1)[1+sin^(2)x] , where [.] denotes the greatest integer function

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

If f(x)=[2x], where [.] denotes the greatest integer function,then

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :