Home
Class 12
MATHS
If 0ltalphaltbetaltgammagtpi//2,then pro...

If `0ltalphaltbetaltgammagtpi//2`,then prove that `tanalphalt(sinalpha+sinbeta+singamma)/(cosalpha+cosbeta+cosgamma)lttangamma`.

Promotional Banner

Similar Questions

Explore conceptually related problems

if 0ltalphaltbetaltgammaltpi/ 2, then prove that tanalpha lt (sinalpha+sinbeta+singamma)/ (cosalpha+cosbeta+cosgamma)lt tangamma

if 0ltalphaltbetaltgammaltpi/ 2, then prove that tanalpha lt (sinalpha+sinbeta+singamma)/ (cosalpha+cosbeta+cosgamma)lt tangamma

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

If sinalpha + sinbeta + singamma = 3 , then cosalpha + cosbeta + cosgamma equals :

The expression (sinalpha+sinbeta)/(cosalpha+cosbeta) is equal to

If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma" then "cos3alpha+cos3beta+cos3gamma

Prove that (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2((alpha-beta)/2) .

Prove that (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2((alpha-beta)/2)dot

Prove that (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2((alpha-beta)/2)dot

Prove that: (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2((alpha-beta)/2)