Home
Class 11
MATHS
Solve lim(n->oo) an , when a(n+1)=sqrt(...

Solve `lim_(n->oo) a_n` , when `a_(n+1)=sqrt(2+a_n),n=1,2,3....`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(ntooo)a_(n) when a_(n+1)=sqrt(2+a_(n)), n=1,2,3, ….. is

The value of lim_(ntooo)a_(n) when a_(n+1)=sqrt(2+a_(n)), n=1,2,3, ….. is

The value of lim_(ntooo)a_(n) when a_(n+1)=sqrt(2+a_(n)), n=1,2,3, ….. is

If a_1=1\ a n d\ a_(n+1)=(4+3a_n)/(3+2a_n),\ ngeq1\ a n d\ if\ (lim)_(n->oo)a_n=n then the value of a_n is sqrt(2) b. -sqrt(2) c. 2\ d. none of these

If S_n=sum_(k=1)^n a_k and lim_(n->oo)a_n=a , then lim_(n->oo)(S_(n+1)-S_n)/sqrt(sum_(k=1)^n k) is equal to

If a_n =(2n-3)/6 , then find a_(10) ?

Let a sequence be defined by a_1=1,a_2=1 and a_n=a_(n-1)+a_(n-2) for all n >2, Find (a_(n+1))/(a_n) for n=1,2,3, 4.

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

Prove that lim_(n rarr oo)a_(n)=-(1)/(4), where a_(n)=n^(2),(sqrt(1+(1)/(n))+sqrt(1-(1)/(n))-2) for n in N.

The Fibonacci sequence is defined by a_1=1=a_2,\ a_n=a_(n-1)+a_(n-2) for n > 2. Find (a_(n+1))/(a_n) for n=1,2,3,4, 5.