Home
Class 11
MATHS
Let a function be defined as f(x)={[x] ,...

Let a function be defined as `f(x)={[x] , -2 leq x leq -1/2 and 2x^2-1 , -1/2 lt x leq 2` where [.] denotes greatest integer function.Answer the following questions by using the above information. The number of points of discontinuity of `f (x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a function be defined as f(x)={[x],-2<=x<=(1)/(2) and 2x^(2)-1,-(1)/(2)

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

If f(x)=sgn(x-2) xx [In x], 1leq x leq 3 and {x^2} ,-3 lt x leq 3.5 where [.] denotes the greatest integer function and {.} represents the fractional part functon, then the number of points of discontinuity in [1,3.5] is

If f(x)= {(|1-4x^2|,; 0 lt= x lt 1), ([x^2-2x],; 1 lt= x lt 2):} , where [.] denotes the greatest integer function, then f(x) is

If f(x)={|1-4x^2|,0lt=x<1 and [x^2-2x],1lt=x<2 where [.] denotes the greatest integer function, then

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

If f(x) = {{:(|1-4x^(2)|",",0 le x lt 1),([x^(2)-2x]",",1 le x lt 2):} , where [] denotes the greatest integer function, then