Home
Class 12
MATHS
" Q08.Evaluate: "i^(n)+i^(n+1)+i^(n+2)+i...

" Q08.Evaluate: "i^(n)+i^(n+1)+i^(n+2)+i^(n)

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate (i^(4n+1) - i^(4n-1)) .

For an positive integer n, prove that : i^(n) + i^(n+1) + i^(n+2) + i^(n+3) + i^(n+4) + i^(n + 5) + i^(n+6) + i^(n+7) = 0 .

If i= sqrt-1 and n is a positive integer , then i^(n) + i^(n + 1) + i^(n + 2) + i^(n + 3) is equal to

1 + i^(2n) + i^(4n) + i^(6n)

i^(n) + i^(n+1) + i^(n + 2) + i^(n + 3)

If n in N, then find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3)

Find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3) for all n in N.