Home
Class 11
MATHS
If y=x^((logx)^("log"(logdotx))),t h e n...

If `y=x^((logx)^("log"(logdotx))),t h e n(dy)/(dx)i s` (a)`y/x(1n x^(oox-1))+21 nx1n(1nx))` (b)`y/x(logx)^("log"(logx))(2log(logx)+1)` (c)`y/(x1nx)[(1nx)^2+21 n(1nx)]` (d)`y/x(logy)/(logx)[2log(logx)+1]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^((logx)^("log"(logdotx))),t h e n(dy)/(dx)i s (a) y/x(1n x^(x-1))+21 nx1n(1nx)) (b) y/x(logx)^("log"(logx))(2log(logx)+1) (c) y/(x1nx)[(1nx)^2+21 n(1nx)] (d) y/x(logy)/(logx)[2log(logx)+1]

If y=x^((logx)^(log(logx))) , then (dy)/(dx) is

If y=x^((logx)^log(logx)) , then (dy)/(dx) is

If y=x^((logx)^log(logx)) then (dy)/(dx)=

int(1)/(x(logx)log(logx))dx=

If y=x^(n)logx+x(logx)^(n)," then "(dy)/(dx) is equal to

(1)/(logx)-(1)/((log x)^(2))

x(dy)/(dx)=y(logy-logx+1)

x(dy)/(dx)=y(logy-logx-1)

x(dy)/(dx)=y(logy-logx+1)