Home
Class 9
MATHS
For any positive real number x , find th...

For any positive real number `x ,` find the value of `((x^a)/(x^b))^(a+b)\ xx\ ((x^b)/(x^c))^(b+c)\ xx\ ((x^c)/(x^a))^(c+a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any positive real number x, find the value of ((x^(a))/(x^(b)))^(a+b)x((x^(b))/(x^(c)))^(b+c)x((x^(c))/(x^(a)))^(c+a)

The value of ((x^(a))/(x^(b)))^(a+b) xx ((x^(b))/(x^(c)))^(b+c) xx ((x^(c))/(x^(a)))^(c + a) is equal to

Prove that: ((x^a)/(x^b))^c\xx\ ((x^b)/(x^c))^a\ xx\ ((x^c)/(x^a))^b=1

Prove that: ((x^a)/(x^b))^(a^(2+a b+b^(2)))xx\ ((x^b)/(x^c))^(b^(2+b c+c^2))\ xx\ ((x^c)/(x^a))^(c^(2+c a+a^2))

Prove that: ((x^a)/(x^(b)))^(a^(2+a b+b^2))\ xx\ ((x^b)/(x^(c)))^(b^(2+b c+c^2))\ xx\ ((x^c)/(x^(a)))^(c^(2+c a+a^2))=1

The value of ((x^(a))/(x^(b)))^((1)/(ab)) xx ((x^(b))/(x^(c)))^((1)/(bc)) xx ((x^(c))/(x^(a)))^((1)/(ca)) is equal to

Simplify: ((x^(a))/(x^(-b)))^(a-b)xx((x^(b))/(x^(-c)))^(b-c)xx((x^(c))/(x^(-a)))^(c-a)