Home
Class 11
MATHS
Consider the parabola y^2 = 8x Area of t...

Consider the parabola `y^2 = 8x` Area of the figure formed by the tangents and normals drawn at the extremities of its latus rerum

Promotional Banner

Similar Questions

Explore conceptually related problems

The area of the quadrillateral formed by the tangents and normals at the extremities of the latus rectum of the parabola y^(2)-4y+4+12x=0 is

The area of the quadrillateral formed by the tangents and normals at the extremities of the latus rectum of the parabola y^(2)-4y+4+12x=0 is

Consider the parabola y^2 = 8x. Let Delta_1 be the area of the triangle formed by the end points of its latus rectum and the point P( 1/2 ,2) on the parabola and Delta_2 be the area of the triangle formed by drawing tangents at P and at the end points of latus rectum. Delta_1/Delta_2 is :

Consider the parabola y^2 = 8x. Let Delta_1 be the area of the triangle formed by the end points of its latus rectum and the point P( 1/2 ,2) on the parabola and Delta_2 be the area of the triangle formed by drawing tangents at P and at the end points of latus rectum. Delta_1/Delta_2 is :

Consider the parabola y^(2) = 8x . Let Delta_(1) be the area of the triangle formed by the end points of its latus rectum and the point P(1/2,2) on the parabola, and Delta_(2) be the area of the triangle formed by drawing tangents at P and at the end points of the latus rectum. Then (Delta_(1))/(Delta_(2)) is

Consider the parabola y^2 = 8x. Let Delta_1 be the area of the triangle formed by the end points of its latus rectum and the point P( 1/2 ,2) on the parabola and Delta_2 be the area of the triangle formed by drawing tangents at P and at the end points of latus rectum. Delta_1/Delta_2 is :

Consider the parabola y^(2) = 8x . Let triangle_(1) be the area of the triangle formed by the endpoints of its latus rectum and the point P ((1)/(2) ,2) on the parabola, and triangle_(2) be the area of the triangle formed by drawing tangents at P and at the endpoints of the latus rectum. Then is (Delta_(1))/(Delta_(2)) is.

Consider the parabola y^2 = 8x. Let Delta_1 be the area of the triangle formed by the end points of its latus rectum and the point P( 1/2 ,2) on the parabola and Delta_2 be the area of the triangle formed by drawing tangents at P and at the end points of latus rectum. Delta_1/Delta_2 is :

Statement-1: Point of intersection of the tangents drawn to the parabola x^(2)=4y at (4,4) and (-4,4) lies on the y-axis. Statement-2: Tangents drawn at the extremities of the latus rectum of the parabola x^(2)=4y intersect on the axis of the parabola.