Home
Class 12
MATHS
x+cot^(-1)(x+1)=tan^(-1)(x^(2)+x+1)...

x+cot^(-1)(x+1)=tan^(-1)(x^(2)+x+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)x=tan^(-1)x then

tan ^(-1)x+cot^(-1)(x+1) = tan ^(-1) (1+x+x^(2))

The number of real solution of equation tan^(-1)x+cot^(-1)(-|x|)=2tan^(-1)(6x) is

int(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x)dx equals

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Prove that 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x (x != 0)

If sin (cot^(-1)(1-x))=cos(tan^(-1)(-x)) , then x is

Solve for x tan^(-1)(x-1)=cot^(-1)((4)/(x))

If y=(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x) then (dy)/(dx)=