Home
Class 12
MATHS
(b^(2)-c^(2))/(cos B+cos C)+(c^(2)-a^(2)...

(b^(2)-c^(2))/(cos B+cos C)+(c^(2)-a^(2))/(cos C+cos A)+(a^(2)-b^(2))/(cos A+cos B)=

Promotional Banner

Similar Questions

Explore conceptually related problems

(v) (b^(2)-c^(2))/(cos B + cos C) + (c^(2)-a^(2))/( cos C + cosA) + (a^(2)-b^(2))/(cos A + cos B)=0

b(cos A-a cos C)=c^(2)-a^(2)

(b^(2)-c^(2))/(a)cos A+(c^(2)-a^(2))/(b)cos B+(a^(2)-b^(2))/(c)cos C=0

(vii) (b^(2) -c^(2)) cos 2A + (c^(2) -a^(2)) cos 2B + (a^(2) -b^(2)) cos 2C=0

In any triangle ABC, prove that : (a^2-b^2)/(cos A+cos B)+(b^2-c^2)/(cos B+cos C)+(c^2-a^2) /(cos C+cos A)=0 .

Prove that a(b^(2) + c^(2)) cos A + b(c^(2) + a^(2)) cos B + c(a^(2) + b^(2)) cos C = 3abc

Prove that a(b^(2) + c^(2)) cos A + b(c^(2) + a^(2)) cos B + c(a^(2) + b^(2)) cos C = 3abc

Prove that a(b^(2) + c^(2)) cos A + b(c^(2) + a^(2)) cos B + c(a^(2) + b^(2)) cos C = 3abc

In triangle ABC,a(b^(2)+c^(2))cos A+b(c^(2)+a^(2))cos B+c(a^(2)+b^(2))cos C=