Home
Class 12
MATHS
If f''(x)=k,k != 0 , then the value of ...

If `f''(x)=k,k != 0` , then the value of `lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f''(0)=k,kne0 , then the value of lim_(xto0)(2f(x)-3f(2x)+f(4x))/(x^2) is

If f''(0)=k,kne0 then the value of lim_(xrarr0)(2f(x)-3f(2x)+f(4x))/(x^(2)) is

Let f''(x) be continuous at x = 0 and f"(0) = 4 then value of lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)

If the normal to differentiable curve y = f(x) at x = 0 be given by the equation 3x-y + 3 = 0 , then the value of lim_(x->0) x^2(f(x^2)-5f(4x^2)+ 4f(7x^2)) is

Let f'(x) be continuous at x=0 and f'(0)=4 then value of lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

Let f(x) be a twice-differentiable function and f"(0)=2. The evaluate: lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).