Home
Class 12
MATHS
log((2)/(4))log(5)(x^(2)+7)+log(2)log(4)...

log_((2)/(4))log_(5)(x^(2)+7)+log_(2)log_(4)(x^(2)+7)^(-1)=-2

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve log_(3/4)log_8(x^2+7)+log_(1/2)log_(1/4)(x^2+7)^(-1)=-2 .

log_(3/4)log_8(x^2+7)+log_(1/2)log_(1/4)(x^2+7)^(-1)=-2

log_(3/4)log_8(x^2+7)+log_(1/2)log_(1/4)(x^2+7)^(-1)=-2 .

log_((3)/(4))log_(8)(x^(2)+7)+log_((1)/(2))log_((1)/(4))(x^(2)+7)^(-1)=-2

log_((3)/(4))log_(8)(x^(2)+7)+log_((1)/(2))log_((1)/(4))(x^(2)+7)^(-1)=-2

If log_(2)(x^(2)+1)+log_(13)(x^(2)+1)=log_(2)(x^(2)+1)log_(13)(x^(2)+1)*(x!=0) then log_(7)(x^(2)+24) is equal to

log_(2)(4^(x)+4)=log_(2)2^(x)+log_(2)(2^(x+1)-3)

log_((1)/(5))(2x^(2)+7x+7)=0

let E=log_(2)(log_(2)3)+log_(2)(log_(3)4)+log_(2)(log_(4)5)+log_(2)(log_(5)6)+log_(2)(log_(6)7)+log_(2)(log_(7)8 then 8^(E) is