Home
Class 12
MATHS
Solve for real values of x :((sin^(-1)x)...

Solve for real values of `x :((sin^(-1)x)^3+(cos^(-1)x)^3)/((tan^(-1)x+cot^(-1)x)^3)=7`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation (sin^(-1)x)^(3)-(cos^(-1)x)^(3)+(sin^(-1)x)(cos^(-1)x)(sin^(-1)x-cos^(-1)x)=(pi^(3))/(16) is :

find the value of x: cos(tan^-1x) = sin(cot^-1(3)/(4))

The number of real values of x satisfying tan^(-1)((x)/(1-x^(2)))+tan^(-1)((1)/(x^(3))) is

The number of real values of x satisfying tan^(-1)((x)/(1-x^(2)))+tan^(-1)((1)/(x^(3)))=(3pi)/(4) is :

Solve for x : cos(tan^(-1)x)=sin(cot^(-1)\ 3/4)

Statement-1: sin^(-1)tan((tan^(-1))x+tan^(-1)(1-x))] =(pi)/(2) has no non zero integral solution Statement-2: The greatest and least values of (sin^(-1)x)^(3)+(cos^(-1)x)^(3) are (7pi)^(3)/(8) and (pi)^(3)/(32) respectively

Statement-1: sin^(-1)tan((tan^(-1))x+tan^(-1)(1-x))] =(pi)/(2) has no non zero integral solution Statement-2: The greatest and least values of (sin^(-1)x)^(3)+(cos^(-1)x)^(3) are (7pi)^(3)/(8) and (pi)^(3)/(32) respectively