Home
Class 13
MATHS
" Exaprics if "x=sin^(-1)((2t)/(1+t^(2))...

" Exaprics if "x=sin^(-1)((2t)/(1+t^(2)))" and "y=tan^(-1)((2t)/(1-t^(2))),t>1." Prove that "(dy)/(dx)=-1

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sin^(-1)((2t)/(1+t^(2))) and y=tan^(-1)((2t)/(1-t^(2))),-1

If x=sin^(-1)((2t)/(1+t^2))"and"y=tan^(-1)((2t)/(1-t^2)),-1

If x=sin^(-1)((2t)/(1+t^(2)))andy=tan^(-1)((2t)/(1-t^(2))), then prove that (dy)/(dx)=1 .

If x=sin^(-1)((2t)/(1+t^(2)))andy=tan^(-1)((2t)/(1-t^(2))), then prove that (dy)/(dx)=1 .

If x=sin^(-1)((2t)/(1+t^2))a n d \ y=tan^(-1)((2t)/(1-t^2)),t > 1. P rov e \ t h a t(dy)/(dx)=-1

If x = sin^(-1) ((2t)/( 1 + t^(2) )) and y= tan^(-1) ((2t)/( 1-t^(2) )), t gt 1 prove that (dy)/(dx) = 1 .

If x=sin^(-1)[(2t)/(1+t^2)]'and'y=tan^(-1)((2t)/(1-t^2)), prove that dy/dx=1'.

If x=sin^(-1)((t)/(sqrt(1+t^(2)))),y=cos^(-1)((1)/(sqrt(1+t^(2)))),"show that "(dy)/(dx)=1

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)), prove that (dy)/(dx)+(x)/(y)=0

If x=(1-t^(2))/(1+t^(2))" and "y=(2t)/(1+t^(2))," then: "(dy)/(dx)|_(t=1) is