Home
Class 11
MATHS
^nC(3)+^(n)C(4)>^(n+1)C(3)," then least ...

^nC_(3)+^(n)C_(4)>^(n+1)C_(3)," then least value of nis "

Promotional Banner

Similar Questions

Explore conceptually related problems

If sim nC_(4),^(n)C_(5),^(n)C_(6) are in A.P.then the value of n is

If ""^((n+1))C_(3)+""^((n-1))C_(4)gt""^(n)C_(3) , then the minimum value of n is

If (n-1)C_(6)+(n-1)C_(7)>nC_(6) then

If 3^n is a factor of the determinant |{:(1,1,1),(.^nC_1,.^(n+3)C_1,.^(n+6)C_1),(.^nC_2, .^(n+3)C_2, .^(n+6)C_2):}| then the maximum value of n is ……..

If ""^(n-1)C_(3)+""^(n-1)C_(4)gt""^nC_(3) , then

If ""^(n-1)C_(3)+""^(n-1)C_(4)gt""^nC_(3) , then

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+ . . .+C_(n)x^(n) , then the value of : C_(1)+2C_(2)+3C_(3)+ . . .+nC_(n) is:

If nC_(4),^(n)C_(5) and ^(n)C_(6) are in AP, then n is