Home
Class 12
MATHS
Let f(x)=x^2+ 1/x^2 and g(x)=x-1/x, x ...

Let `f(x)=x^2+ 1/x^2` and `g(x)=x-1/x, x in R-{-1,0,1}`. If `h(x) = f(x)/g(x)` then the local minimum value of `h(x)` is: (1) 3 (2) `-3` (3) `-2sqrt(2)` (4) `2sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x^2+(1/x^2) and g(x)=x-1/x xinR-{-1,0,1} . If h(x)=(f(x)/g(x)) then the local minimum value of h(x) is: (1) 3 (2) -3 (3) -2sqrt(2) (4) 2sqrt(2)

Let f(x)=x^(2)+((1)/(x^(2))) and g(x)=x-(1)/(x)xi nR-{-1,0,1}. If h(x)=((f(x))/(g(x))) then the local minimum value of h(x) is: (1)3(2)-3(3)-2sqrt(2)(4)2sqrt(2)

Let f(x)= x^(2)+ (1)/(x^(2)) and g(x)= x- (1)/(x), x in R -{-1, 0,1} . If h(x)= (f(x))/(g(x)) then the minimum local value of h(x) is…….

Let f(x)=(x-2)(x^(4)-4x^(3)+6x^(2)-4x+1) then value of local minimum of f is

Let f(x)=|x-2|+|x-3|+|x+4| and g(x)=f(x+1) . Then g(x) is

If int(x-1)/(x^2sqrt(2x^2-2x-1))dx = sqrt(f(x))/g(x) +c then the value of f(x) and g(x) is

Let f:""R vec R be defined by f(x)={k-2x , if""xlt=-1 (-2x+3),x >-1} . If f has a local minimum at x=-1 , then a possible value of k is (1) 0 (2) -1/2 (3) -1 (4) 1

If f(x)=x^2+(1)/(x^2), g(x)=x^4+(1)/(x^4) and a+(1)/(a)=3 , then the respectively values of f(a) and g(a) are

Let f:R -{3} to R{1} : f(x) = (x-2)/(x-3)and g:R to R , g(x)=2x-3 and f^-1(x)+g^-1(x)=13/2 then sum of all value of x is