Home
Class 12
MATHS
If f(x) =2 [x]+ cos x, then f: R ->R is...

If `f(x) =2 [x]+ cos x`, then `f: R ->R` is: (where [ ] denotes greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

If f : R rarr R is a function defined by : f(x) = [x] c cos ((2x - 1)/(2))pi, where [x] denotes the greatest integer function, then 'f' is :

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

If f: R to R is function defined by f(x) = [x-1] cos ( (2x -1)/(2)) pi , where [.] denotes the greatest integer function , then f is :

If f(x) = [x] - [x/4], x in R where [x] denotes the greatest integer function, then

If f(x)=[2x], where [.] denotes the greatest integer function,then

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

The number of integers in the range of function f(x)=[sin x]+[cos x]+[sin x+cos x] is (where [.]= denotes greatest integer function)

If f:R to R is function defined by f(x) = [x]^3 cos ((2x-1)/2)pi , where [x] denotes the greatest integer function, then f is :

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous