Home
Class 12
MATHS
If one of the cube roots of 1 be omega, ...

If one of the cube roots of 1 be `omega`, then `|(1,1+omega^2,omega^2),(1-i,-1,omega^2-1),(-i,-1+omega,-1)|` (A) `omega` (B) `i ` (C) 1 (D) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega(ne 1) is a cube root of unity, then |{:(1,1+omega^(2),omega^(2)),(1-i,-1,omega^(2)-1),(-i,-1+omega,-1):}| equals :

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If (omega ne1) is a cube root of unity , then {:(1 , 1 + i+ omega^(2) , omega^(2)) , (1-i, -1 , omega^(2) -1) , (-i , -1 + omega - i, -1):}|

If omega is complex cube root of 1 then S.T [(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)]=0

If omega is a cube root of unity |(1, omega, omega^(2)),(omega, omega^(2), 1),(omega^(2), omega, 1)| =

If omegane1 is a cube root of unity , then the value of |(1,1+i+w^2,w^2),(1-i,-1,w^2 -1),(-i,-1+w-i,-1)| , is