Home
Class 11
MATHS
If y=sin^(-1)x, prove that (1-x^2)(d^2y)...

If `y=sin^(-1)x`, prove that `(1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin^(-1)x , show that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0 .

If y=e^m\ sin^((-1)x) , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)-m^2y=0 .

If y=sin^(-1)x , show that (1-x^2)\ (d^2y)/(dx^2)-x(dy)/(dx)=0 .

If y=sin^(-1)x show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=e^(msin^(-1)x) prove that (1-x^2)((d^2y)/dx^2)-x(dy)/dx=m^2y

y= sin ^(-1)x show that (1-x^2) (d^2 y)/(dx^2) -x (dy)/(dx) =0

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .

If y=sin^(-1)x then prove that (1-x^(2))(d^(y))/(dx^(2))-x(dy)/(dx)=0

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0