Home
Class 12
MATHS
x+sin^(-1)(1-x)=cos^(-1)x...

x+sin^(-1)(1-x)=cos^(-1)x

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x satisfying sin^(-1)x+sin^(-1)(1x)=cos^(1)x are

Solve for x: sin^-1 x + sin^-1(1-x) = cos^-1x

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Solve: sin^-1x+sin^-1(1-x)=cos^-1x

Solve: Sin^-1x+sin^-1(1-x)=cos^1x

The number of roots of the equation sin^(-1)x-(1)/(sin^(-1)x)=cos^(-1)x-(1)/(cos^(-1)x) is

The number of roots of the equation sin^(-1)x-(1)/(sin^(-1)x)=cos^(-1)x-(1)/(cos^(-1)x) is

The number of roots of the equation sin^(-1)x-(1)/(sin^(-1)x)=cos^(-1)x-(1)/(cos^(-1)x) is (a) 0 (b) 1 (c) 2 (d) 3