Home
Class 7
MATHS
" If "f'(a)=(1)/(4)," then "lim(h rarr0)...

" If "f'(a)=(1)/(4)," then "lim_(h rarr0)(f|a+2h^(2)|-f(a-2h^(2)))/(f(a+h^(3)-h^(2))-f(a-h^(3)+h^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(a)=(1)/(4), then lim_(h rarr0)(f(a+2h^(2))-f(a-2h^(2)))/(f(a+h^(3)-h^(2))-f(a-h^(3)+h^(2)))=0 b.1 c.-2 d.none of these

If f(a)=(1)/(4) , then lim_(hrarr0) (f(a+2h^(2))-f(a-2h^(2)))/(f(a+h^(3)-h^(2))-f(a-h^(3)+h^(2))) =

lim_(h rarr0)(sin h)/(h)

If f'(3)=2, then lim_(h rarr0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is

lim_(h rarr0)(e^((x+h)^(2))-e^(x^(2)))/(h)

If f(x)=(1)/(x), evaluate lim_(h rarr0)(f(x+h)-f(x))/(h)

lim_(h rarr0)(sin^(2)(x+h)-sin^(2)x)/(h)

lim_(h rarr0)((a+h)^(2)sin(a+h)-a^(2)sin a)/(h)

lim_(h rarr0)h sin(1/h)

If f(x)=(sin(pi x)/(4))/(x+1) , then lim_(h rarr0)(f(1+h)-f(1))/(h^(2)+2h) is