Home
Class 11
MATHS
lim(x rarr0)log|(log(1+x))/(x)|'=...

lim_(x rarr0)log|(log(1+x))/(x)|'=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin log(1-x))/(x)

lim_(x rarr0)(log_(e)(1+x))/(x)

lim_(x rarr0)(log(1+x))/(x)=1

Prove quad that quad (i) lim_(x rarr0)(a^(x)-1)/(x)=log_(e)aquad (ii) lim_(x rarr0)(log_(1+x))/(x)=1

lim_(x rarr0)(log x+log((1+x)/(x)))/(x)

lim_(x rarr0)(log(1-(x)/(2)))/(x)

lim_(x rarr 0) (log(1+x))/(3^x-1)=1/(log_(e)(3))

lim_(x rarr0)(log(1+x))/(3^(x)-1)

lim_(x rarr0)(log(1+x))/(3^(x)-1)

lim_(x rarr0)(sin log(1+x))/(x) =1