Home
Class 8
MATHS
[" 12; The domain of "f(x)=cos^(-1)((2-|...

[" 12; The domain of "f(x)=cos^(-1)((2-|x|)/(4))+[log(3-x)]^(-1)" is "],[[" 1) "[-2,6]," 2) "[-6,2)uu(2,3)," 3) "[-6,2]," 4) "[-2,2]uu]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x)=cos^(-1)((2-|x|)/(4))+[log(30x)]^(-1) is

The domain of f(x)=cos^(-1)((2-|x|)/(4))+[log(3-x)]^(-1) is (a)[-2,6](b)[-6,2)uu(2,3)[-6,2](d)[-2,2]uu(2,3)

The domain of f(x)=cos^(-1)((2-|x|)/4)+[ log(3-x)]^-1 is (a) [-2,6] (b) [-6,2)uu(2,3) [-6,2] (d) [-2,2]uu(2,3)

The domain of f(x)=cos(log x) is

The domain of f(x)=(1)/(log|x|) is

the domain of f(x)=cos(log x) is

The domain of f(x)=cos^(-1)((log_(5)(x^(2)))/(2)) is

If f(x)=cos^(-1)((2-|x|)/(4))+[log_(10)(3-x)]^(-1) , then its domain is

Find domain for " "y=cos^(-1)((1-2abs(x))/4)+log(3-x)^-1.

The domain of f(x)=sqrt(x-2)+(1)/(log(4-x)) is