Home
Class 11
MATHS
In triangle ABC prove that (b^2-c^2)/(c...

In ` triangle ABC` prove that `(b^2-c^2)/(cos B+cos C) +(c^2-a^2)/(cos C+cos A) +(a^2-b^2)/(cos A + cos B)=0`

Text Solution

Verified by Experts

`a/sinA=b/SinB=c/sinC=k`
`a=KsinA,b=KSinB,c=KsinC`
`(b^2-c^2)/(cosB+cosC)=(k^2sin^2B-k^2sin^2c)/(cosB+cosC)=(k^2(1-cos^2B-(1-cos^2C)))/(cosC+cosB)`
`k^2(cos^2C-cos^2B)/(cosB+cosC)=k^2(cosC-CosB)`
LHS=`k^2(cosC-cosB)+k^2(cosA-cosC)+k^2(cosb-cosC)`
`K^2[0]=0=RHS`. `
Promotional Banner

Similar Questions

Explore conceptually related problems

If any triangle ABC, that: (b^(2)-c^(2))/(cos B+cos C)+(c^(2)-a^(2))/(cos C+cos A)+(a^(2)-b^(2))/(cos A+cos B)=0

In any Delta ABC, prove that :(b^(2)-c^(2))/(cos B+cos C)+(c^(2)-a^(2))/(cos C+cos A)+(a^(2)-b^(2))/(cos A+cos B)=0

In any triangle ABC, prove that : (a^2-b^2)/(cos A+cos B)+(b^2-c^2)/(cos B+cos C)+(c^2-a^2) /(cos C+cos A)=0 .

In any triangle ABC, prove that : a (b cos C-c cos B) = b^2 -c^2 .

In Delta ABC, prove that (b^(2)-c^(2))/(a)cos A + (c^(2)-a^(2))/(b)cos B + (a^(2) - b^(2))/(c) cos C = 0

In triangle ABC , prove that (1) a=b cos C+c cos B (2) b=a cos C+c cos A .

For any triangle ABC, prove that (b+c)cos(B+C)/(2)=a cos(B-C)/(2)

For any triangle ABC,prove that a(b cos C-c cos B)=b^(2)-c^(2)

In Delta ABC prove that a^2(cos^2B - cos^2C) + b^2(cos^2C - cos^2A) + c^2(cos^2A - cos^2B) = 0

In any triangle ABC, prove that : a (cos C - cos B) = 2 (b-c) cos^2 frac (A)(2) .