Similar Questions
Explore conceptually related problems
Recommended Questions
- 1^(2)+2^(2)+...+n^(2)>(n^(3))/(3)
Text Solution
|
- lim (n rarr oo n rarr oo) (1.n ^ (2) +2 (n-1) ^ (2) +3 (n-2) + ... + n...
Text Solution
|
- 1*2+2*2^(2)+3*2^(3)+*2^(n)=(n-1)2^(n+1)+2
Text Solution
|
- f(n)=(1^(2)n+2^(2)(n-1)+3^(2)(n-2)+...+n^(21))/(1^(3)+2^(3)+3^(3)+.......
Text Solution
|
- Prove that 1*2+2*3+3*4+.....+n*(n+1)=(n(n+1)(n+2))/(3)
Text Solution
|
- If 1*1!+2*2!+3*3!+ . . .+n*n ! =(n+1)!-1 then show that, 1*1!+2*2!+3*3...
Text Solution
|
- A) |lim(n rarr oo)((n^((1)/(2)))/(n^((3)/(2)))+(n^((1)/(2)))/((n+3)^((...
Text Solution
|
- lim(n rarr oo)(3^(n+1)+2^(n+2))/(3^(n-1)+2^(n-2))=
Text Solution
|
- underset(n to oo)lim (n(1^(3)+2^(3)+...+n^(3))^(2))/((1^(2)+2^(2)+...+...
Text Solution
|