Home
Class 12
MATHS
1^(2)+2^(2)+...+n^(2)>(n^(3))/(3)...

1^(2)+2^(2)+...+n^(2)>(n^(3))/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

If ninNN , then by principle of mathematical induction prove that, 1^(2)+2^(2)+3^(2)+....+n^(2)gt(n^(3))/(3) .

Prove that 1^(2) +2^(2)+ ….+n^(2) gt (n^(3))/(3) n in N

Prove that 1^(2) +2^(2)+ ….+n^(2) gt (n^(3))/(3) , n in N

lim_(n rarr oo) (1^(2)+2^(2)+....+n^(2))/(2n^(3)+3n^(2)+4n+1 ) =

Prove that, 1^2 + 2^2 + …..+ n^2 gt (n^3)/(3) , n in N

By the principle of mathematic induction, prove that, for n ge 1 , 1^(2) + 2^(2) + 3^(2) + …+n^(2) gt n^(3)/3

underset(n to oo)lim (n(1^(3)+2^(3)+...+n^(3))^(2))/((1^(2)+2^(2)+...+n^(2))^(3))=

Using the principle of mathematical induction. Prove that (1^(2)+2^(2)+…+n^(2)) gt n^(3)/3 " for all values of " n in N .

f(n)=(1^(2)n+2^(2)(n-1)+3^(2)(n-2)+...+n^(21))/(1^(3)+2^(3)+3^(3)+......+n^(3)) then (where [.] denotes greatest integer function)