Home
Class 12
MATHS
f(x)={3[x]-5|x|/x, x != 0 and 2 , x=0 wh...

`f(x)={3[x]-5|x|/x, x != 0 and 2 , x=0` where [.] denotes the greatest integer function, then `int_(-3/2)^2 f(x) dx` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

Let f : R->R be given by f(x) = {|x-[x]| , when [x] is odd and |x-[x]-1| , when [x] is even ,where [.] denotes the greatest integer function , then int_-2^4 f(x) dx is equal to (a) (5)/(2) (b) (3)/(2) (c) 5 (d) 3

Consider f(x)={: {(x|x|,,x = 1):} Where [.] denotes the greatest integer function then the value of int_(-2)^(2)f(x)dx, is

if f(x) ={{:(2x-[x]+ xsin (x-[x]),,x ne 0) ,( 0,, x=0):} where [.] denotes the greatest integer function then

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

Let f(x) = 1 + |x|,x = -1, where [*] denotes the greatest integer function.Then f { f (- 2.3)} is equal to