Home
Class 12
MATHS
The solution of the differential equatio...

The solution of the differential equation `dy/dx=e^(x-y)+x^2e^(-y)` is (A) `y=e^x+1/2 x^2+c ` (B) `e^(y-x)=1/3 x^3+c ` (C) `e^y = e^x +1/3 x^3+c ` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation (dy)/(dx) = e^(3x-2y) +x^(2)e^(-2y) ,is

The solution of the differential equation x(e^(2y)-1)dy+(x^2-1)e^y dx=0 is

The solution of the differential equation x(e^(2y)-1)dy + (x^2-1) e^y dx=0 is

The solution of the differential equation x(e^(2y)-1)dy + (x^2-1) e^y dx=0 is

Solution of the differential equation (1+e^(x/y))dx + e^(x/y)(1-x/y)dy=0 is

Solution of the differential equation (1+e^(x/y))dx + e^(x/y)(1-x/y)dy=0 is

The solution of the differential equation (1+e^(x))y(dy)/(dx) = e^(x) when y=1 and x = 0 is

The general solution of the differential equation dy/dx=e^(x-y) is a) e^y+e^x=C b) e^-y+e^-x=C c) e^y-e^x=C d) e^-y-e^-x=C

The solution of the differential eqution (d^(2)y)/(dx^(2)) = e^(-2x) is y = c_(1)e^(-2x) +c_(2)x + c_(3) where c_(1) is