Home
Class 12
MATHS
Let G be the centroid of Delta ABC , If...

Let G be the centroid of `Delta` ABC , If `vec(AB) = vec a , vec(AC) = vec b,` then the `vec(AG),` in terms of `vec a and vec b, ` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let G be the centroid of ABC .If vec AB=vec a,vec AC=vec b ,then the bisector vec AG, in terms of vec a and vec b is (2)/(3)(vec a+vec b) b.(1)/(6)(vec a+vec b) c.(1)/(3)(vec a+vec b) d.(1)/(2)(vec a+vec b)1

If G is the centroid of Delta ABC then vec(G)A + vec(G)B + vec(G)C =

Let G be the centroid of triangle \ A B Cdot If vec A B= vec a ,\ vec A C= vec b , then the bisector vec A G , in terms of vec a\ a n d\ vec b is 2/3( vec a+ vec b) b. 1/6( vec a+ vec b) c. 1/3( vec a+ vec b) d. 1/2( vec a+ vec b)1

G is the centroid of a triangle ABC, show that : vec(GA)+vec(GB)+vec(GC)=vec0 .

If vec(a)=vec(OA) " and " vec(b)=vec(AB), " then " vec(a)+vec(b) is -

If G is the centroid of a triangle ABC, prove that vec GA+vec GB+vec GC=vec 0

If G is the centroid of a triangle ABC, prove that vec(GA)+vec(GB)+vec(GC) = 0

If G denotes the centroid of Delta ABC, then write the value o vec GA+vec GB+vec GC

If G is the centroid of a triangle ABC, prove that vec(GA)+vec(GB)+vec(GC)=vec(0) .

If ABCD is a parallelogram and vec AB = vec a , vec BC= vec b then show that vec AC = vec a+ vec b and vec BD = vec b- vec a .