Home
Class 12
MATHS
Prove that: i) sin^(-1)(1/sqrt(5))+sin^...

Prove that: i) `sin^(-1)(1/sqrt(5))+sin^(-1)(2/sqrt(5))=pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

sin^(-1)((1)/(sqrt(5)))+sin^(-1)((1)/(sqrt(10)))=(pi)/(4)

Show that sin^(-1)(1/sqrt(10))+cos^(-1)(2/sqrt5)=pi/4 .

cot (sin ^(-1)""(1)/(sqrt(5))+sin ^(-1)""(2)/(sqrt(5)))

Prove that : (i) sin(tan^(-1)1) = 1/(sqrt(2))

cos^(-1)""(2)/(sqrt(5))+sin ^(-1)""(1)/(sqrt(10))=(pi)/(4)

Prove that sin^(-1)(4/5)+sin^(-1)(5/13)+sin^(-1)(16/65)=pi/2 .

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))