Home
Class 12
MATHS
The range of the function y=sqrt(2{x}-{x...

The range of the function `y=sqrt(2{x}-{x}^2-3/4)` (where, denotes the fractional part) is

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x)={(sin x-2)/(3)} is (where{.} denotes fractional part)?

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)

The range of the function f(x) = frac{1-{x}}{1+{x}} is (where {.} denotes the fractional part of x )

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

Range of the function f(x)=({x})/(1+{x}) is (where "{*}" denotes fractional part function)

The domain of f(x) = sqrt( 2 {x}^2 - 3 {x} + 1) where {.} denotes the fractional part in [-1,1]

The domain of f(x)=sqrt(x-2{x}). (where {} denotes fractional part of x ) is