Home
Class 12
MATHS
The value of the definte integral int0^...

The value of the definte integral `int_0^(pi/2) ln(1+ sqrt3 tantheta) dx`, is equal to `pi/plog_e q` where `q and p` prim then `(q+p)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

The value of the definite integral int_(0)^((pi)/(3))ln(1+sqrt(3)tan x)dx equals -

The value of int_(0)^((pi)/(3))log(1+sqrt3 tanx)dx is equal to

The value of int_(0)^((pi)/(3))log(1+sqrt3 tanx)dx is equal to

If the value of the integral I=int_((pi)/(4))^((pi)/(3))" max "(sinx, tanx)dx is equal to ln k, then the value of k^(2) is equal to