Home
Class 6
MATHS
" (vii) "2s^(2)-(1+2sqrt(2))s+sqrt(2)...

" (vii) "2s^(2)-(1+2sqrt(2))s+sqrt(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients of the polynomial : 2s^(2)-(1+2 sqrt(2))s+ sqrt(2)

Maximum value of |z+1+i|, where z in S is (a) sqrt(2) (b) 2 (c) 2sqrt(2) (d) 3sqrt(2)

If (0,1),(1,1)a n d(1,0) be the middle points of the sides of a triangle, its incentre is (2+sqrt(2),2+sqrt(2) ) (b) [2+sqrt(2),-(2+sqrt(2))] (2-sqrt(2),2-sqrt(2)) (d) [2-sqrt(2),(2+sqrt(2))]

If (0,1),(1,1)a n d(1,0) be the middle points of the sides of a triangle, its incentre is (2+sqrt(2),2+sqrt(2) ) (b) [2+sqrt(2),-(2+sqrt(2))] (2-sqrt(2),2-sqrt(2)) (d) [2-sqrt(2),(2+sqrt(2))]

If (0,1),(1,1) and (1,0) be the middle points of the sides of a triangle,its incentre is (2+sqrt(2),2+sqrt(2))( b) [2+sqrt(2),-(2+sqrt(2))](2-sqrt(2),2-sqrt(2)) (d) [2-sqrt(2),(2+sqrt(2))]

A circle S of radius 'a' is the director circle of another circle S_(1),S_(1) is the director circle of circle S_(2) and so on.If the sum of the radii of all these circle is 2, then the value of 'a' is 2+sqrt(2)(b)2-(1)/(sqrt(2))2-sqrt(2)(d)2+(1)/(sqrt(2))

A circle S of radius ' a ' is the director circle of another circle S_1,S_1 is the director circle of circle S_2 and so on. If the sum of the radii of all these circle is 2, then the value of ' a ' is (a) 2+sqrt(2) (b) 2-1/(sqrt(2)) (c) 2-sqrt(2) (d) 2+1/(sqrt(2))

(2+sqrt(2)+(1)/(2+sqrt(2))+(1)/(sqrt(2)-2)) simplifies to 2-sqrt(2)(b)2(c)2+sqrt(2)(d)2sqrt(2)

If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))], A=[(1,0),(-1,1)] and P=S ("adj.A") S^(T) , then find matrix S^(T) P^(10) S .

If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))], A=[(1,0),(-1,1)] and P=S ("adj.A") S^(T) , then find matrix S^(T) P^(10) S .