Home
Class 12
MATHS
" 18."(e^(2))/(4 pi)I(1)=int(e)^(2)(dx)/...

" 18."(e^(2))/(4 pi)I_(1)=int_(e)^(2)(dx)/(log x)" 37"1,quad I_(2)=int_(1)^(2)(e^(x))/(x)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

If I_(1)=int_(e)^(e^(2))(dx)/(logx) and I_(2)=int_(1)^(2)(e^(x))/(x)dx then

If I_(1)=int_(e )^(e^(2)) (dx)/(logx)"and "I_(2)=int_(1)^(2)(e^(x))/(x)dx ,then

If I_(1)=int_(e)^(e^(2))(dx)/(logx)andI_(2)=int_(1)^(2)(e^(x))/(x)dx, then

If I_(1)=int_(e)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

If I_(1)=int_(n)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

If I_(1) = int_e^(e^(2)) (dx)/(log x) and I_(2) = int_1^(2) (e^(x)dx)/(x) then

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx