Home
Class 12
MATHS
For real x , the greatest value of (x^2+...

For real x , the greatest value of `(x^2+2x+4)/(2x^2+4x+9)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The greatest value of (4)/(4x^(2)+4x+9) is

If x be real , find the greatest value of (x+2)/(2x^2+3x+6) .

IF x is real then the value of ( x ^2 - 3x +4)/( x^2 +3x +4) lies in the interval

IF x is real , find the greatest and the least value of : (x^2-2x+2)/(x^2+3x+9)

If x is real , then the minimum value of (x^(2)-3x+4)/(x^(2)+3x+4) is :

If x be real , show that the value of (2x^2-2x+4)/(x^2-4x+3) cannot lie between (-7) and 1.

If 'x' is real, then greatest value of the expression, (x+2)/(2x^(2)+3x +6) is :

If 'x' is real, then greatest value of the expression, (x+2)/(2x^(2)+3x +6) is :