Home
Class 14
MATHS
cos^(-1)((63)/(65))+2tan^(-1)((1)/(5))=s...

cos^(-1)((63)/(65))+2tan^(-1)((1)/(5))=sin^(-1)(3)/(5)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: "cos"^(-1)63/65+2"tan"^(-1)1/5="sin"^(-1)3/5

Prove that sin^(-1)((4)/(5))+tan^(-1)((5)/(12))+cos^(-1)((63)/(65))=(pi)/(2)

Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((63)/(65))

Prove that cos^(-1)((3)/(5))+cos^(-1)((12)/(13))+cos^(-1)((63)/(65))=(pi)/(2)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that ( cos^(-1) ""(3)/(5) + sin^(-1)""(5)/(13) ) = sin^(-1)((63)/(65))

The value of 3 "tan"^(-1)(1)/(2) + 2 "tan"^(-1)(1)/(5) + "sin"^(-1)(142)/(65sqrt(5)) is :

The value of 3 "tan"^(-1)(1)/(2) + 2 "tan"^(-1)(1)/(5) + "sin"^(-1)(142)/(65sqrt(5)) is :