Home
Class 14
MATHS
|[a,b,c],[a^(2),b^(2),c^(2)],[bc,ca,ab]|...

|[a,b,c],[a^(2),b^(2),c^(2)],[bc,ca,ab]|vec a10|-1|c|0vec svec varepsilon|vec t-

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a,vec b and vec c are three mutually perpendicular vectors,then the vector which is equally inclined to these vectors is a.vec a+vec b+vec c b.(vec a)/(|vec a|)+(vec b)/(|vec b|)+(vec c)/(|vec c|) c.(vec a)/(|vec a|^(2))+(vec b)/(|vec b|^(2))+(vec c)/(|vec c|^(2))d|vec a|vec a-|vec b|vec b+|vec c|vec c

For any three vectors vec a,vec b,vec c, prove that |vec a+vec b+vec c|^(2)=|vec a|^(2)+|vec b|^(2)+|vec c|^(2)+2(vec adot b+vec bvec c+vec c+vec a)

If vec a is parallel to vec b xxvec c ,then (vec a xxvec b)*(vec a xxvec c) is equal to |vec a|^(2)(vec b*vec c) b.|vec b|^(2)(vec a*vec c) c.|vec c|^(2)(vec a*vec b) d.none of these

If vec a , vec ba n d vec c are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is a. vec a+ vec b+ vec c b. vec a/(| vec a|)+ vec b/(| vec b|)+ vec c/(| vec c|) c. vec a/(| vec a|^2)+ vec b/(| vec b|^2)+ vec c/(| vec c|^2) d. | vec a| vec a-| vec b| vec b+| vec c| vec c

If vec a , vec ba n d vec c are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is a. vec a+ vec b+ vec c b. vec a/(| vec a|)+ vec b/(| vec b|)+ vec c/(| vec c|) c. vec a/(| vec a|^2)+ vec b/(| vec b|^2)+ vec c/(| vec c|^2) d. | vec a| vec a-| vec b| vec b+| vec c| vec c

If vec a , vec ba n d vec c are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is vec a+ vec b+ vec c b. vec a/(| vec a|)+ vec b/(| vec b|)+ vec c/(| vec c|) c. vec a/(| vec a|^2)+ vec b/(| vec b|^2)+ vec c/(| vec c|^2) d. | vec a| vec a-| vec b| vec b+| vec c| vec c

[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

If vec a*vec b=beta and vec a xxvec b=vec c, then vec b is ((betavec a-vec a xxvec c))/(|vec a|^(2)) b.((betavec a+vec a xxvec c))/(|vec a|^(2)) c.((betavec c-vec a xxvec c))/(|vec a|^(2))d((betavec a+vec a xxvec c))/(|vec a|^(2))

vec a,vec b,vec c are three vectors, such that vec a+vec b+vec c=0 , |vec a|=1,|vec b|=2,|vec c|=3 , |vec a.vec b+vec b.vec c+vec c.vec a| is equal to

Let vec a,vec b,vec c be three vectors such that vec a!=0, and vec a xxvec b=2vec a xxvec c,|vec a|=|vec c|=1,|vec b|=4|vec a xxvec c|=sqrt(15) If vec b-2vec c=lambdavec a, then lambda equal to